The Next Killer App – Part 1

“Killer App”?

“Killer App” is a computer industry term. It refers to the software that creates the value that makes people buy the hardware – lots of hardware. In this post, I use “killer app” rather loosely, to mean a whole genre of software that breathes life into new hardware platforms.

Seventy-five years ago, the “killer app” was military software, such as code breaking, that financed the first truly digital computers. Today, it is social media and entertainment software that powers smart phone sales. Tomorrow, look for safety, efficiency and entertainment software that sells electric automobiles – especially electric vehicles that drive themselves.

This post – part 1 of 2 – reviews the idea of an electro – mechanical continuum in equipment design. This provides background for a discussion of electric vehicles and their consequences The Next Killer App – Part 2, next week.


The Electro – Mechanical Spectrum – From 15 November 2014

The Evolution of Machinery

Four Change DriversIt is increasingly clear — if not painfully clear — to most manufacturers that those who cannot embrace change are ill-prepared for the realities of operating in the 21st century. Manufacturers today face a convergence of many change drivers, which this blog rather arbitrarily groups as Globalization, Sustainability, Technology, and Demographics & Trends. To further complicate matters, some change drivers interact with others. Some emerge seemingly instantaneously, like 3D printing. Others reflect a trend over time.

This post looks at a trend in machinery, from almost entirely mechanical to extensively electrical (or electronic). One can imagine a continuum with mechanical devices at one extreme and electrical (or electronic) devices at the other.

As a familiar example, consider a continuum with a fine mechanical wrist watch at one extreme and the Apple Watch,[1] which was recently announced for 2015, at the other. It is easy to see a trend over time from pure mechanical watches to Bulova’s Accutron (electric tuning fork) watch, to quartz crystal watches, to all digital watches, to digital watches that keep time and do an increasing number of other things as well. In my view, the tipping point – the point where watches became more electrical than mechanical – fell between quartz watches with analog faces and hands, and quartz watches with digital displays.

Automobiles provide another example. Early cars were mechanical devices. They made little use of electricity, other than firing spark plugs – a hand crank started the engine. Electrification increased over the years to include lights, starter motors, electric windshield wipers, seat warmers and so on. Almost all of today’s cars make extensive use of electric power and computerization.

The Tesla Model S automobile may be close to a tipping point. Electric motor(s) propel the car — there is no combustion engine. Almost everything else is electric (or electronic) as well. Computers extensively monitor and regulate internal functioning and performance. The latest version of the Model S has two drive motors and all-wheel drive. The performance monitoring and feed-back in distributing power to the wheels is such that the much more powerful two motor version draws less current than the single motor version, extending – rather than reducing — the effective range between battery charges. The Model S also comes equipped with collision avoidance radar and sonar devices which also feed autopilot capabilities, not unlike a commercial airliner.

In the Factory

Equipment used in manufacturing isn’t exempt from this trend in technology. Newer machinery almost always makes more use of electricity and electronics than the machinery it replaced. Increased electrification (especially electronics-fication) improves the reliability and efficiency of the machine itself. It also improves the consistency of the products the machine produces.

Even more important, the information generated can be used outside the equipment in a multitude of useful ways – equipment maintenance, production throughput, energy consumption and materials utilization come quickly to mind. So, there are two advantages: (a) monitoring, feedback and corrective actions within the machine itself, and (b) information collection, analysis and utilization of the same information outside of the machine. Information collection can be through an industrial network, or through the internet.[2]

Production information available through the internet – the Internet of Things – is fraught with possibilities – multi-plant operations, remote maintenance, customer service and interfacing with transportation, for starters. When your firm’s products include “smart” internet accessible capability, the potential for adding value mushrooms.

This isn’t all smoke and mirrors. A McKinsey Global Institute report[3] projects that the Internet of Things will produce $0.9 trillion to $2.3 trillion in annual economic impact to manufacturers globally by 2025. Further, the McKinsey report projects that 80% – 100% of all manufacturers will be affected.

For Smaller Manufacturers

The evolution of machinery presents serious areas for concern for smaller manufacturers. Manufacturers that take advantage of this technology can expect significant gains in internal operating efficiency and in customer – facing areas. Smaller manufacturers, as a group, already lag larger manufacturers in productivity.[4] Smaller manufacturers, as a group, are less likely to have the technical capabilities necessary to exploit this technology. Smaller manufacturers, as a group, also find capital to be more expensive and harder to access than do larger firms.

These are serious concerns. Smaller manufacturers can address them by: (a) understanding and appreciating the disruptive potential for this technology within their industry, (b) continuing to focus their business, and (c) building joint actions with equipment suppliers, through trade associations, through technical societies and with customers.

Chuck - Austrian AlpsThoughtful comments and experience reports are always appreciated.

…  Chuck Harrington (Chuck@JeraSustainableDevelopment.com)

P.S: Contact me when your organization is serious about confronting the realities of 21st century manufacturing … CH

This blog and associated website (www.JeraSustainableDevelopment.com) are intended as a resource for smaller manufacturers in the pursuit of Sustainability. While editorial focus is on smaller manufacturers, all interested readers are welcome. New blog posts are published weekly.


[1] If you are curious about the Apple Watch, see http://www.apple.com/watch/films/#film-design

[2] For more on connected machines and products, see Smart Connected Products, a recent report from Oxford economics: http://www.ptc.com/File%20Library/Topics/Smart%20Connected%20Products/Oxford-Economics_Smart-Connected-Products-Report.pdf?l9=EN&src=Button&utm_campaign=SCP%20IoT%20SCP%20Oxford%20Report%20%e2%80%93%20IT%20B&utm_medium=email&utm_source=Eloqua

[3] See Disruptive Technologies: Advances that will transform life, business and the global economy, http://www.mckinsey.com/insights/business_technology/disruptive_technologies

[4] For more on the productivity gap between larger manufacturers and smaller, see Confronting the Productivity Gap, this blog, http://jerasustainabledevelopment.com/2012/11/29/confronting-the-productivity-gap/