What the Frack?

On January 17th of this year, the Annual Energy Outlook for 2017 (AEO 2017) was published by the Energy Information Agency, part of the U.S. Government.[1] The AEO examines U.S. domestic energy production and consumption, with extrapolations[2] into the future. Information from the AEO 2017 provides information and insights relevant to business management. This post focuses on petroleum and natural gas production through hydraulic fracture and directional drilling techniques (“fracking”).

America and Petroleum

The graphic labeled “Energy Consumption” is from the AEO 2017. The brown line indicates that petroleum and related liquids fuels about 35% of America’s energy current energy consumption.[3] Further, it indicates little change in annual petroleum consumption over the next 24 years, given the assumptions used to extrapolate the AEO’s “reference case”.

Over the past several decades, the U.S. has consistently consumed considerably more petroleum than it has produced. The difference has been imported, much of it from the Middle East. Since imports must be paid for, petroleum imports have resulted in a substantial drag on the U.S. economy. Further, securing continuing petroleum supplies from overseas has been a major determinant of U.S. foreign policy.

The graphic labeled “Net Energy Trade” illustrates that, in the years around 2006 – 2008, the U.S. imported amounts of petroleum equivalent to over 25% of its entire annual energy consumption, net of any petroleum exports!

Then something dramatic happened. U.S. domestic production increased rapidly from about 2010, resulting in a major decline in global petroleum prices. Accordingly, retail gasoline prices declined by about half during the last six months of 2014, resulting in boost to the U.S. economy that, in my opinion, triggered in the end of the Great Recession. Think of it this way: when a boatload of crude oil arrived in 2013 at $100+ per barrel, the U.S. shipped a boatload of greenbacks overseas in payment. By 2015, the price of crude was less than $50 per barrel and the number of boatloads imported dropped sharply. So, the U.S. shipped many fewer greenbacks overseas in payment. The rest stayed at home, within the U.S. economy. Since we are talking about millions of barrels every day, the difference really matters.

The Fracking Revolution

Fracking – petroleum and natural gas production by directional drilling plus hydraulic fracturing – is a truly remarkable technological innovation. Look again at the graph labeled “Energy Consumption”. Notice the rapid increase in natural gas consumption from 2010. That too is due to fracking. As a fuel, natural gas is complementary to petroleum. Petroleum fuels primarily transportation. Natural gas fuels mostly stationary consumption, including industrial uses, commercial and residential heating, and especially electric power generation.  

Natural gas is difficult and expensive to transport, other than by pipeline. Fortunately, the U.S. already had a domestic pipeline network in place as the huge increase in natural gas production due to fracking became available. Prior to the advent of “fracking”, global natural gas prices generally followed petroleum (crude oil) prices. The increase in natural gas supply in the U.S. resulted in natural gas prices that are not pegged to petroleum, and that are considerably lower than natural gas prices elsewhere.

Implications, Domestic and International

>> Energy Independence: Due to increased U.S. domestic production of petroleum and natural gas, the AEO 2017 projects that U.S energy exports will exceed imports by 2026, using “reference case” assumptions. That means that, if necessary, U.S. energy production would be sufficient to satisfy America’s energy requirements, without relying on OPEC or anybody else.

>> Industrial Economics: U.S. domestic prices for natural gas are substantially lower than elsewhere in the world. This provides U.S. industry with two competitive advantages in global trade. First, energy costs are low. Second, many important petrochemicals can be produced from natural gas, resulting in lower raw materials cost for many products.

>> Petroleum and Natural Gas Reserves: Fracking is used in geological formations that are different from those where conventional petroleum and natural gas production methods are used. That means energy production becomes possible in geographic areas where it is otherwise infeasible. It also means that the world’s potential reserves of petroleum and natural gas have increased substantially.

>> International Development: Fracking technology can and will be applied in other countries. Correspondingly, many nations that lack conventional petroleum or natural gas production may be able to become producers, thus reducing dependence on foreign sources and gaining a degree of freedom from global energy prices.

>> Cleaner Fuels: Petroleum produced by fracking is generally light and sweet. That means it is easy to refine, with few byproducts such as sulfur or heavy metals. Refining light, sweet crudes is relatively energy efficient. Accordingly, less carbon dioxide is produced when light, sweet crude is produced and consumed. Natural gas is even cleaner.


There is a lot more information worth discussing in the AEO 2017. Look for more posts on other AEO 2017 in the future.

Chuck - Blue SweaterThoughtful comments and experience reports are always appreciated.

…  Chuck Harrington (Chuck@JeraSustainableDevelopment.com)

This blog and associated website (www.JeraSustainableDevelopment.com) are intended as a resource for smaller manufacturers in the pursuit of Sustainability. While editorial focus is on smaller manufacturers, all interested readers are welcome.


[1] The AEO 2017 is available for free download on the Energy Information Agency’s website, www.eia.gov

[2] I use “extrapolations” rather than “forecasts” to emphasize that the AEO is projecting present and recent past information into the future based on certain assumptions. The “reference case” refers to a “business as usual” set of assumptions that do not anticipate government policy changes or technological innovations, other than those already in place.

[3] Note: U.S. annual primary energy consumption is about 100 quadrillion BTUs.